

中国研究生创新实践系列大赛 "华为杯"第十六届中国研究生 数学建模竞赛

学 校	清华大学
会演作日	1010002000/
 	19100030006
	1. 徐义深
队员姓名	2. 支 音
_	3. 叶豪

中国研究生创新实践系列大赛

"华为杯"第十六届中国研究生

数学建模竞赛

题 目 天文导航中的星图识别

摘 要:

本文主要分析两个问题,问题1是光轴位姿的解算问题,问题2是星图识别问题。

在处理问题1时,本文主要建立了基于光轴的张角模型,利用星敏感器几何信息、星图识别信息和恒星坐标信息,计算从星敏感器坐标系到天球坐标系的映射关系**R**,从而得到了**D**点(星敏感器光轴与天球的交点)的坐标。不失一般的,本文对标量**a**和矢量**a**均作了讨论和分析,仿真结果表明,同样的误差条件下,矢量信息得到的解算精度更高。

对于问题1(1),本文建立了多种数学模型,分别讨论了星图中三颗星不共线和共线的不同解 法。对于一般的情况,星图中选取的三颗星都是不共线的,分别使用归一化处理和引入线性误差项 优化两个方式建模解算。仿真数据表明引入线性误差项优化得到的精度相对更高,但是由于该方法 使用了优化器求解,速度相对较慢。综合考虑精度和速度,后文统一使用朴素的归一化处理的方法 求解该种情况的解。

对于问题1(2),本文仍采用问题1(1)的模型框架,将未知量f引入,构造了相应的映射关系,并使用数值方法估计f*,进而得到D点的坐标。在使用数值解法迭代求解仿真数据时,发现f 的计算值受初值的影响较大,容易产生不合实际的值,因此需要先验的f范围对数值求解结果进行 限制。对于矢量a的输入,本文得到了一种有解析解的算法,从而规避了上述初值问题,能够得到 稳定的f值,并且该方法下D点的解算精度和已知f的情况下的计算精度基本一致。

对于问题 1 (3),本文在误差相对足够小的假设下,引入泰勒一阶展开,将D点的坐标误差剥 离成MΔa的形式,其中M只与恒星的坐标以及星图坐标相关,Δa为误差项。那么可以估计出这种 情况下解算误差的上界与||M|||Δa||正相关,只需要在所有的三颗星组合中,选取||M||最小的组合 即可。仿真结果显示这种算法解算得到的精度平均能够超过 80%的三星组合。本文对恒星选择个数 进行了进一步讨论,分别使用带约束的 OLS 拟合和不带约束的归一化的 OLS 拟合两种方式,希望 能够充分利用星图中所有恒星的信息。仿真结果表明带约束的 OLS 拟合效果更好,但是解算也更 慢,这种方法得到的精度能够超过 90%的三星组合。

在处理问题2时,本文主要采用的是离线计算特征,在线匹配角距的算法,采用了划分星表块和引入角距误差上限估计的方式,减小计算复杂度,并且提升模型的鲁棒性。

对于问题2的离线预处理部分,本文首先建立了圆形视场的划分模型,得到了不同星敏感器参数下的不同最优星表块划分方式,确保给定星敏感器视场的参数,星敏感器视场中的星一定完整地 落在某一个星表块中,从而避免了部分光轴角度无法匹配的情况。

对于问题 2 的特征提取部分,本文构造了三角距特征,并引入了角距误差上限的估计(门限) 方式,门限的大小只与星图中两点坐标以及坐标误差δ相关。优先筛选门限较小的三星组合,从而 在遍历星表块的开始阶段使用相对严格的预匹配条件,实现了星表块的快速过滤与筛选。对于本算 法,门限作为一个模型参数输入,对于噪声较大的情况,图像传感器的误差变大,δ也较大,那么 算法应该匹配一个相对较大的门限值,否则算法将会误判假星的出现,从而降低算法的识别精度。 在具体筛选的过程中,使用二分法进行查找,从而加速筛选过程。

对于问题 2 的匹配部分,本文针对假星的出现对算法的匹配方法进行了修正,通过识别高阶星 组的方式,去除不匹配的假星,从而实现此种情况的星图的识别,提高了算法的鲁棒性。

本文的创新点在于:(一)针对同一问题提出了多个数学模型或求解算法,并比较了简单与复杂的模型与算法的求解速度和精度,比如针对矩阵的可逆性进行三种情况讨论分析,求解f时提出 了解析求解的方法提高解算精度;(二)针对同一问题提出了新的解决问题的思路,例如在问题 1 (3)中提出使用 OLS 估计的方法提高星图的光轴位姿结算精度;(三)模型推导严谨,给出了详 细的推导过程和解法;(四)使用仿真数据验证,结论更加可靠。

关键词: 星图识别; 误差上界估计; 最小二乘; 星表分块; 三角特征; 角距匹配

第1章 问题重述	5
1.1 问题背景	5
1.2 问题内容	5
121 问题 1	5
1.2.1 日前2 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	5
第2章 问题 1-光轴位姿解算的分析与建模(标量 ai)	6
2.1 使用 f, ai, αi, δi 信息的光轴位姿解算	6
2.1.1 数学建模	6
2.1.2 矩阵可逆性的讨论	7
2.1.3 仿真分析	8
2.2 使用 αi,αi,δi 信息的光轴位姿解算	9
2.2.1 数学建模	9
2.2.2 仿真分析	9
23 提高光轴位姿解算精度的恒星选择	9
2.5 疑問乃福世又所并很民间世生起汗	ر ۵
2.3.1 奴 于 廷 祆	10
2.3.2 但生远许 数的闪花	10
2.5.5 仍具刀机	12
第3章 问题 1-光轴位姿解算的分析与建模(矢量 ai)	14
3.1 使用 f , ai , αi , δi信息的光轴位姿解算	14
3.1.1 数学建模	14
3.1.2 仿真分析	15
3.2 使用 <i>αi,αi,δi</i> 信息的光轴位姿解算	15
3.2.1 数学建模	15
3.2.2 仿真分析	17
3.3 提高光轴位姿解算精度的恒星选择	17
3.3.1 数学建模	17
332 恒星洗择个数的讨论	18
333 仿直分析	19
3.4 标量与矢量的比较分析	21
	<u> </u>
第4章 问题 2-星图识别算法	22
4.1 算法概述	22
4.2 预处理	23
4.2.1 划分星表块	23
4.2.2 计算星表块内所有角距并排序	24
4.3 特征提取	24
4.3.1 角距误差上限的估计	24
4.3.2 计算三角距特征并根据门限排序	25
4.4 匹配	25
4.4.1 匹配流程细节	25

目 录

4.4.2 使用门限匹配星图三角特征与星表块	26
4.4.3 处理假星的算法改进	26
第5章 问题 2-星图识别算法的求解结果与性能评估	27
5.1 星图求解结果	27
5.2 输入星图与解算星图	27
5.3 算法的性能评估	29
5.3.1 识别时间	29
5.3.2 存储容量	29
5.3.3 鲁棒性	29
5.4 仿真分析	29
附 录: 附件 3 星图中星象点对应恒星编号	33
参考文献	34

第1章 问题重述

1.1 问题背景

天文导航是一种广泛应用于各种航天器导航的自主式导航方式,该导航方式不依赖于人工设备, 通过观测恒星的方位确定位姿状态,因此具有较高的导航和定位精度。

星图的识别与匹配是完成姿态定位的核心技术。天文导航使用星敏感器观测恒星星图,并将其 从星敏感器坐标系转换到天球坐标系中,从而和导航星库中的参考星匹配,从而完成自身的姿态定 位。

一般导航星库的规模较大,星图识别面临着识别时间,存储容量和鲁棒性三者之间的平衡问题, 因此需要设计新的识别算法,希望能够更快识别导航星,并且具有较低的存储容量和较高的鲁棒性。

1.2 问题内容

1.2.1 问题1

该问题是光轴位姿解算问题,即当已经完成星图识别后,如何解算飞行器的位姿。已知星图中 三个点的坐标以及对应的三颗恒星的角距,分别在已知星敏感器的几何参数和未知该参数的情况 下,解算出星敏感器的光轴的位姿。在此基础上,讨论在星图中如何选择三个点使得光轴位姿的解 算的精度较高。

1.2.2 问题 2

该问题是星图识别问题,是上个问题的前提。传统的角距或其衍生形式的特征需要较大的存储 空间,且识别准确率和鲁棒性都不高,提出更细致的特征提取的方式,设计对应的算法,并评估该 算法在不同情况下的表现。

第2章 问题 1-光轴位姿解算的分析与建模(标量a_i)

考虑到题目中描述的*a*_i为标量,而附件中给出的数据为矢量*a*_i = (*X*_i,*Y*_i),因此本文使用第2章 和第3章两章分别对两种情况的建模与解算进行讨论与分析,并在0给出二者的比较分析。

2.1 使用 $f_i, a_i, (\alpha_i, \delta_i)$ 信息的光轴位姿解算

2.1.1 数学建模

将天球坐标系记为坐标系 0,将星敏感坐标系记为坐标系 1,将天球坐标系到星敏感器坐标系的转换矩阵记作R,显然有 $RR^T = I$, ${}^1x = R^0x$ 。

定义⁰w为D点在天球坐标系的单位向量,那么D点的解算等价于⁰w的求解。

将 $OP_i(\alpha_i, \delta_i)$ 的单位向量在天球坐标系下的表示记为⁰ p_i ,将 OP_i 的单位向量在星敏感坐标系下的表示记为¹ p_i ,将⁰w与⁰ p_i 的夹角记为 γ_i ,其中i = 1,2,3。

那么有

$${}^{0}\boldsymbol{p}_{i}^{T0}\boldsymbol{w} = \cos\gamma_{i} = f/\sqrt{f^{2} + a_{i}^{2}}$$
$$\|{}^{0}\boldsymbol{w}\|^{2} = 1$$
(2-1)

其中

$${}^{\mathbf{0}}\boldsymbol{p}_{i} = \begin{pmatrix} \cos\alpha_{i}\cos\delta_{i}\\ \sin\alpha_{i}\cos\delta_{i}\\ \sin\delta_{i} \end{pmatrix}$$

将上式矩阵化,有

$${}^{0}P^{0}w = b \tag{2-2}$$

其中

$${}^{\mathbf{0}}\boldsymbol{P} = \begin{pmatrix} {}^{\mathbf{0}}\boldsymbol{p}_{1}^{T} \\ {}^{\mathbf{0}}\boldsymbol{p}_{2}^{T} \\ {}^{\mathbf{0}}\boldsymbol{p}_{3}^{T} \end{pmatrix}, \boldsymbol{b} = \begin{pmatrix} \cos \gamma_{1} \\ \cos \gamma_{2} \\ \cos \gamma_{3} \end{pmatrix}$$

2.1.2 矩阵可逆性的讨论

此时图像中三颗星能够组成一个三角形,⁰P可逆,那么可以直接得到

$${}^0w = {}^0P^{-1}b$$

然而考虑计算和数据采集误差的因素,约束(2-1)不一定能够被满足,因此引入如下两种处理方法:

(I)归一化处理

可以直接将⁰P⁻¹b归一化处理,即

$${}^{0}w = \frac{{}^{0}P^{-1}b}{\|{}^{0}P^{-1}b_{r}\|}$$
(2-3)

(II) 引入误差项

引入记号Δa_i表示测量以及识别星象点质心中心位置a_i的过程中产生的误差,**b**_r表示真实的质 心中心位置得到的矩阵**b**以及**Δb**表示由误差项**Δ**a_i产生的**b**的误差。

$$b = b_r + \Delta b = b_r + A\Delta a$$
$$\|^0 P^{-1} b_r\| = 1$$

其中

$$\boldsymbol{A} = \begin{pmatrix} \partial \cos \gamma_1 / \partial a_1 \\ \partial \cos \gamma_2 / \partial a_2 \\ \partial \cos \gamma_3 / \partial a_3 \end{pmatrix}^{T}, \boldsymbol{\Delta} \boldsymbol{a} = \begin{pmatrix} \Delta a_1 \\ \Delta a_2 \\ \Delta a_3 \end{pmatrix}$$

注意这里面做了线性假设,只取了泰勒一阶展开,即认为图像识别的精度足够高, Δ*a*_i足够小, 和真实值不会出现较大的偏差。

从而将上述问题转化为以下带约束的优化问题,使用优化器求解即可。

$$\min_{\Delta a} \|\Delta a\|^2 \quad s.t. \|{}^{\mathbf{0}} P^{-1} (b - A \Delta a)\|^2 = 1$$

(二)⁰**P**不可逆且为2

此时图像中三颗星共线。考虑⁰P的广义逆⁰P⁺,有

$${}^{0}w = {}^{0}P^{+}b + kt \ (k \in \mathbb{R})$$

其中

$$||t|| = 1, {}^{0}Pt = 0$$

考虑约束(2-1),有

$$\| {}^{\boldsymbol{0}}\boldsymbol{P}^{+}\boldsymbol{b} \|^{2} + \|k\boldsymbol{t}\|^{2} = 1$$

即可求得t,而直线与单位球最多有两个交点,因此⁰w最多有两个解。

(三) 0P不可逆且秩为1

此时图像中三颗星重合,这种情况没有讨论的意义。

2.1.3 仿真分析

使用仿真数据分析在⁰**P**可逆的情况下,分别使用归一化处理和引入误差项两种解法的精度。作为比较,本节也将未做线性假设的引入误差项的结果在仿真数据中呈现。

参考附件中给的数据,使用欧拉角生成转换矩阵R,同时有如下仿真参数设置。

- ✓ 星敏感器视场12°×12°
- ✓ 像素数为512×512
- ✓ f = 256/tan 6° ≈ 2435.7像素
- ✓ 误差分布为正态分布, $\sigma = 0.05$ 像素

(一)算法的正确性验证

下图验证了无噪声条件下算法的正确性。

图 2.2 无噪声-标量a-不同处理方法的误差分布

(二)误差分析

将计算⁰w的误差定义为解算值和实际值的角度差值的绝对值,得到如下图所示的⁰w误差分布 图。可以发现归一化处理和线性误差假设方法的得到的误差基本一致,引入非线性误差得到的结果 偏大,但不显著,这可能和复杂的优化问题求解较难有关。

图 2.3 有噪声-标量a-不同处理方法的误差分布

2.2 使用 a_i , (α_i, δ_i) 信息的光轴位姿解算

2.2.1 数学建模

当f未知时,公式(2-2)中的b未知,仅考虑⁰P可逆的情况,那么有 ⁰ $w = {}^{0}P^{-1}b(f)$

其中

$$\boldsymbol{b}(f) = \begin{pmatrix} f/\sqrt{f^2 + a_1^2} \\ f/\sqrt{f^2 + a_2^2} \\ f/\sqrt{f^2 + a_3^2} \end{pmatrix}$$

考虑约束(2-1),可以将上述问题转化为以下问题:

$$f^* = \arg_f \left(\left\| {}^{\boldsymbol{0}} \boldsymbol{P}^{-1} \boldsymbol{b}(f) \right\|^2 = 1 \right)$$

上式没有解析解的形式,使用求解器迭代求解即可。取合理的解f*,有

$${}^{0}w^{*} = {}^{0}P^{-1}b(f^{*})$$

2.2.2 仿真分析

采用前文所述的仿真参数,得到以下仿真的结果,可以发现有无f的仿真结果基本是一致的。 但是值得注意的是,上述的f的数值求解只有当大致知道f的范围时才足够稳定,否则将会由于给 定初值的不同导致极端的f计算值的出现。

图 2.4 有噪声-标量a-归一化处理_有无f的误差分布

2.3 提高光轴位姿解算精度的恒星选择

2.3.1 数学建模

选择不同几何位置的三颗星,提高D点在天球坐标系中解算位置的精度并分析误差。

根据本文在 2.1.2 (一)(II)中的讨论,对于误差项Δa,有

$$^{0}w = P^{-1}b = P^{-1}(b_r + A\Delta a)$$

为了提高解算精度,希望在 $P^{-1}A\Delta a$ 在与 $P^{-1}b_r$ 垂直的分量尽可能小,考虑如下垂直的分量的估计

$$P^{-1}A\Delta a - ig({}^0w^TP^{-1}A\Delta aig){}^0w \coloneqq M\Delta a$$

其中

$$M = P^{-1}A - \begin{pmatrix} {}^{0}w^{T}P^{-1}Ae_{1}{}^{0}w \\ {}^{0}w^{T}P^{-1}Ae_{2}{}^{0}w \\ {}^{0}w^{T}P^{-1}Ae_{3}{}^{0}w \end{pmatrix}^{T}$$

那么考虑

$\min_{P,A} \|M\Delta a\|^2$

因为

$$\|M\Delta a\|^2 \leq \|M\|^2 \|\Delta a\|^2$$

可以最小化该误差的上界,即考虑

$\min_{\boldsymbol{P},\boldsymbol{A}} \|\boldsymbol{M}\|^2$

对于有限的点集,只需要遍历该数据集即可得到最小||**M**||²,从而找到了误差上界最小的恒星 的组合,该组合并不一定是最优的,但是其误差是一定可控的。

2.3.2 恒星选择个数的讨论

当视场内恒星的数量*n* > 3时,可以使用 OLS 等方法,利用多个恒星的信息估计*D*点在天球坐标系中的位置信息。

即考虑

$${}^{0}P'{}^{0}w=b'$$

其中

$${}^{\mathbf{0}}\boldsymbol{P}' = \begin{pmatrix} {}^{\mathbf{0}}\boldsymbol{p}_{1}^{T} \\ \cdots \\ {}^{\mathbf{0}}\boldsymbol{p}_{i}^{T} \\ \cdots \\ {}^{\mathbf{0}}\boldsymbol{p}_{n}^{T} \end{pmatrix}, \boldsymbol{b}' = \begin{pmatrix} \cos \gamma_{1} \\ \cdots \\ \cos \gamma_{i} \\ \cdots \\ \cos \gamma_{n} \end{pmatrix}$$

且⁰P′是列满秩的。

类似的,引入如下两种处理方法:

(一)无约束拟合,对拟合结果归一化处理

该方法在拟合参数时,不限制 $\|{}^{0}\hat{\boldsymbol{w}}\|^{2} = 1$,那么其损失函数为

$$L_1 = \left\| {}^{\mathbf{0}} \boldsymbol{P}' {}^{\mathbf{0}} \boldsymbol{w} - \boldsymbol{b}' \right\|^2$$

OLS 估计结果为

$${}^{0}\widehat{w} = \left({}^{0}P'{}^{T}{}^{0}P'\right)^{-1}{}^{0}P'{}^{T}b'$$

有

$${}^{0}w = \frac{{}^{0}\widehat{w}}{\|{}^{0}\widehat{w}\|}$$

(二)带约束拟合,使用拉格朗日方法求解

在优化目标函数时,限制 $\|{}^0\hat{\boldsymbol{\omega}}\|^2 = 1$,那么拉格朗日方法的损失函数为

$$L_2 = \left\| {}^{\mathbf{0}} \boldsymbol{P}' {}^{\mathbf{0}} \boldsymbol{w} - \boldsymbol{b}' \right\|^2 - \lambda \left(\left\| {}^{\mathbf{0}} \boldsymbol{w} \right\|^2 - 1 \right)$$

考虑一阶偏导数

$$\frac{\partial L_2}{\partial^0 \boldsymbol{w}} = 2\left[\left({}^{\boldsymbol{0}}\boldsymbol{P'}^T \, {}^{\boldsymbol{0}}\boldsymbol{P'} + \lambda \boldsymbol{I}\right)^0 \boldsymbol{w} - {}^{\boldsymbol{0}}\boldsymbol{P'}^T \boldsymbol{b'}\right] = 0$$
$$\frac{\partial L_2}{\partial \lambda} = \left\|{}^{\boldsymbol{0}}\boldsymbol{w}\right\|^2 - 1 = 0$$

对⁰P'^T0P'进行对角分解, 令

$$U\Sigma U^T = {}^0 P' {}^T {}^0 P'$$

其中**U**为单位正交阵,

$$\boldsymbol{\varSigma} = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \lambda_3 \end{pmatrix}$$

那么

$$(\mathbf{\Sigma} + \lambda \mathbf{I}) \mathbf{U}^{T \mathbf{0}} \mathbf{w} = \mathbf{U}^{T \mathbf{0}} \mathbf{P'}^T \mathbf{b}$$

Ŷ

$$\boldsymbol{U^{T}}^{\boldsymbol{0}}\boldsymbol{P'}^{\boldsymbol{T}}\boldsymbol{b}' = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}$$

那么在||⁰w|| = 1的约束下,有

$$\|\mathbf{0}\mathbf{w}\|^{2} = \|\mathbf{U}^{T}\mathbf{0}\mathbf{w}\|^{2} = \sum_{i=1}^{3} \left(\frac{d_{i}}{\lambda + \lambda_{i}}\right)^{2} = 1$$

那么得到一个6次多项式

$$\sum_{j=0}^{6} c_j \lambda^j = 0$$

其中c_j(j = 0, ...,6)为常数。

考虑下列矩阵

$$\boldsymbol{M} = \begin{pmatrix} -\frac{c_5}{c_6} & \dots & -\frac{c_1}{c_6} & -\frac{c_0}{c_6} \\ 1 & & 0 \\ & \dots & & \dots \\ & & 1 & 0 \end{pmatrix}$$

由于

$$\det(\lambda \boldsymbol{I} - \boldsymbol{M}) = \frac{\left(\sum_{j=0}^{6} c_{j} \lambda^{j}\right)}{c_{6}} = 0$$

那么前述多项式的根为矩阵**M**的特征值。可以使用数值解法求解**M**的特征值,这种解法得到的 结果比(一)更加稳定。

2.3.3 仿真分析

(一) OLS 方法比较

仿真生成旋转矩阵**R**,使用对星表中所有恒星进行投影和加正态分布噪声的方式,评估 OLS 不同估计方法解算D结果的优劣,有如下仿真结果。可以发现在标量输入的情况下,带约束的 OLS 估计方法和不带约束 OLS 估计结果基本一致,都相对很低,而带约束的 OLS 估计解算要耗时更多。

图 2.5 有噪声-标量 a-OLS 估计的误差分布

(二)算法评估与比较

使用如下方法仿真题目中描述的星敏感器视场,并分别评估和比较 OLS 和算法选取三颗星的 优劣:

- (1) 生成一个合理的旋转矩阵R;
- (2) 在附件给出的星表中随机选择一个点;
- (3) 根据附件的参数选取该点的视场范围内的星,生成理论的星图;
- (4) 对理论星图添加正态分布的随机噪声;
- (5) 计算使用星图中所有三颗星组合来解算D的误差;
- (6) 计算使用算法挑选最优的三颗星解算D的误差,并获取该误差在总误差中的排名;
- (7) 计算使用 OLS 估计得到的D的误差,并获取该误差在总误差中的排名;
- (8) 重复(4)-(7)共1000次,得到统计结果。

图 2.6 有噪声-标量 a-不同处理方法的误差排名分布

可以发现 OLS 显著好于算法选点的结果,能够稳定战胜 97%左右的使用三颗星的解算结果, 而算法选点的精度也能稳定战胜 86%左右的三颗星的结果,这说明该算法选点方法是相对可靠的, 但是 OLS 估计的方法精度更高,同样也更加耗时。

第3章 问题 1-光轴位姿解算的分析与建模(矢量a_i)

本章主要基于矢量a_i的输入,给出这种情况下的问题1的解。

3.1 使用 $f_i a_{i_i} (\alpha_{i_i} \delta_{i_j})$ 信息的光轴位姿解算

3.1.1 数学建模

对于 Q_i 点,已知 X_i, Y_i, f ,那么 Q_i 在星敏感器坐标系中被完全定义。 定义

$$c_i = \frac{(X_i \quad Y_i \quad f)}{\|(X_i \quad Y_i \quad f)\|}$$
$$c = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

那么

$$R^{o}P = c \tag{3-1}$$
$$^{o}w = R^{T}e_{3}$$

关于⁰P可逆性的讨论在此不再赘述,只考虑⁰P可逆的情况,那么

$$R = c^0 P^{-1}$$

考虑约束 $RR^T = I$, 对 c^0P^{-1} 进行 SVD 分解, 即

$$U\Sigma V^T = c^0 P^{-1}$$

那么

$R = UV^T$

考虑计算和数据采集误差的因素,约束(2-1)不一定能够被满足,因此引入如下两种处理方法: (I) 归一化处理

类似的,直接使用归一化处理的方法得到

$${}^{0}w = \frac{U^{T}Ve_{3}}{\|U^{T}Ve_{3}\|}$$

(II) 引入误差项

引入误差项 ΔX_i 与 ΔY_i ,记号 c_r 表示真实的质心中心位置得到的矩阵c以及误差项 Δc 。有

$$c = c_r + \Delta c$$

$$RR^{T} = c^{0}P^{-1}(c^{0}P^{-1})^{T} = I$$

其中

$$\Delta c = (N_1 \quad N_2 \quad N_3) \begin{pmatrix} \Delta XY \\ & \Delta XY \\ & & \Delta XY \end{pmatrix}$$

$$\boldsymbol{N}_{i} = \begin{pmatrix} \frac{\partial c_{1i}}{\partial X_{1}} & \frac{\partial c_{1i}}{\partial Y_{1}} & & \\ & & \frac{\partial c_{2i}}{\partial X_{2}} & \frac{\partial c_{2i}}{\partial Y_{2}} & \\ & & & \frac{\partial c_{3i}}{\partial X_{3}} & \frac{\partial c_{3i}}{\partial Y_{3}} \end{pmatrix}, \boldsymbol{\Delta} \boldsymbol{X} \boldsymbol{Y} = \begin{pmatrix} \Delta X_{1} \\ \Delta Y_{1} \\ \Delta X_{2} \\ \Delta X_{2} \\ \Delta Y_{2} \\ \Delta X_{3} \\ \Delta Y_{3} \end{pmatrix}$$

注意这里面做了线性假设,只取了泰勒一阶展开,即认为 ΔX_i 与 ΔY_i 足够小,图像识别的精度足够高,和真实值不会出现较大的偏差。

可以将上述问题转化为以下带约束的优化问题:

$$\min_{\Delta X_{i},\Delta Y_{i}} \|\Delta c\|^{2} \quad s.t. \| (c^{0}P^{-1} - \Delta c^{0}P^{-1}) (c^{0}P^{-1} - \Delta c^{0}P^{-1})^{T} - I \|^{2} = 0$$

使用优化算法求解即可得到

$$R = (c - \Delta c)^0 P^{-1}$$

3.1.2 仿真分析

使用和前文相同的仿真方法,生成二维的(*X_i*,*Y_i*)坐标点,得到如下仿真结果。与标量*a*的情况 基本一致,引入线性误差略好于直接归一化处理。

图 3.1 有噪声-矢量a-不同处理方法的误差分布

3.2 使用 a_i , (α_i, δ_i) 信息的光轴位姿解算

3.2.1 数学建模

(一)使用数值求解的方法求解*f* 当*f*未知时,公式(3-1)中的*c*未知,仅考虑⁰*P*可逆的情况,那么有

$${}^{\mathbf{0}}w = \left(\boldsymbol{c}(f){}^{\mathbf{0}}\boldsymbol{P}^{-1}\right)^{T}\boldsymbol{e}_{\mathbf{3}}$$

注意这里没有使用 SVD 分解。

考虑约束(2-1),可以将上述问题转化为以下问题:

$$f^* = \arg_f \left(\left\| \left(\boldsymbol{c}(f)^{\boldsymbol{0}} \boldsymbol{P}^{-1} \right)^T \boldsymbol{e}_3 \right\|^2 = 1 \right)$$

很难推导出解析解,使用求解器迭代求解即可。 取合理的*f**,

$$\boldsymbol{c}^* = \begin{pmatrix} \boldsymbol{c_1}(f^*) / \| \boldsymbol{c_1}(f^*) \| \\ \boldsymbol{c_2}(f^*) / \| \boldsymbol{c_2}(f^*) \| \\ \boldsymbol{c_3}(f^*) / \| \boldsymbol{c_3}(f^*) \| \end{pmatrix}$$

对⁰P⁻¹c*进行 SVD 分解, 即

$$U^* \Sigma V^{*T} = {}^0 P^{-1} c^*$$

那么

$$\boldsymbol{R} = \boldsymbol{U}^* {\boldsymbol{V}^*}^T$$

类似的,这里直接使用归一化处理的方法得到

$${}^{0}w^{*} = \frac{U^{*T}V^{*}e_{3}}{\left\| U^{*T}V^{*}e_{3} \right\|}$$

(二)使用解析解的方法求解f

定义 β_{ij} 为 OQ_i 与 OQ_j 之间的角距如下图所示。

图 3.2 角距β_{ij}的定义

$$\cos \beta_{ij} = \frac{|OQ_i|^2 + |OQ_j|^2 - |Q_iQ_j|^2}{2|OQ_i||OQ_j|}$$

而

$$|OQ_i|^2 = f^2 + X_i^2 + Y_i^2$$
$$|Q_iQ_j|^2 = (X_i - X_j)^2 + (Y_i - Y_j)^2$$

带入整理可得

$$\begin{pmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{pmatrix} \begin{pmatrix} t^2 \\ t \\ 1 \end{pmatrix} \coloneqq \boldsymbol{e}$$

其中 $t \coloneqq f^2$ 。在理论情况下e = 0,然而考虑误差等因素,上式很有可能不可解,即应转换为如下优化问题:

$$\min_{t} \| \boldsymbol{e} \|^2$$

因此

$$\frac{\partial \boldsymbol{e}^T \boldsymbol{e}}{\partial t} = \boldsymbol{0}$$

对于t来说,这是一个三次多项式求正数零点的问题,是有解析解的,此处公式不详细展开,见代码。当该问题有多个正数零点时,带入原损失函数求得最小的||e||²即得到了期望的f*,若无可行解,或损失函数值过大,则原始说明数据不匹配。

3.2.2 仿真分析

采用前文所述的仿真参数,得到以下仿真的结果,可以发现有无f的仿真结果基本是一致的。 但是值得注意的是,数值求解f只有当大致知道f的范围时才足够稳定,否则将会由于给定初值的 不同导致极端的f计算值的出现。可以直接使用更稳定的解析求解f的方式。

图 3.3 有噪声-矢量a-归一化处理 有无f的误差分布

3.3 提高光轴位姿解算精度的恒星选择

3.3.1 数学建模

根据本文在 3.1.1 (II) 中的讨论,对于误差项Δc,有

$$c = c_r + \Delta c$$
$$R = c_r^0 P^{-1}$$

这里, 只关注

$${}^{0}w = R^{T}e_{3} = (c_{r}{}^{0}P^{-1})^{T}e_{3} = ({}^{0}P^{-1})^{T}c^{T}e_{3} - ({}^{0}P^{-1})^{T}\Delta c^{T}e_{3}$$

类似的,希望

$$\min_{\boldsymbol{P}} \left\| \begin{pmatrix} \boldsymbol{0} \boldsymbol{P}^{-1} \end{pmatrix}^T \Delta \boldsymbol{c}^T \boldsymbol{e}_3 \right\|^2$$

考虑

$$\boldsymbol{\Delta c^{T} e_{3}} = \begin{pmatrix} \frac{\partial c_{13}}{\partial X_{1}} \Delta X_{1} + \frac{\partial c_{13}}{\partial Y_{1}} \Delta Y_{1} \\ \frac{\partial c_{23}}{\partial X_{2}} \Delta X_{2} + \frac{\partial c_{23}}{\partial Y_{2}} \Delta Y_{2} \\ \frac{\partial c_{33}}{\partial X_{3}} \Delta X_{3} + \frac{\partial c_{33}}{\partial Y_{3}} \Delta Y_{3} \end{pmatrix} = N_{3} \boldsymbol{\Delta XY}$$

那么可以考虑

$$\min_{\boldsymbol{P},\boldsymbol{N}_3} \left\| \begin{pmatrix} {}^{\boldsymbol{0}}\boldsymbol{P^{-1}} \end{pmatrix}^T \Delta \boldsymbol{c}^T \boldsymbol{e}_3 \right\|^2 = \min_{\boldsymbol{P}} \left\| \begin{pmatrix} {}^{\boldsymbol{0}}\boldsymbol{P^{-1}} \end{pmatrix}^T \boldsymbol{N}_3 \Delta \boldsymbol{X} \boldsymbol{Y} \right\|^2$$

由于

$$\left\| \left({}^{\mathbf{0}}\boldsymbol{P}^{-1} \right)^{T} \boldsymbol{N}_{3} \Delta \boldsymbol{X} \boldsymbol{Y} \right\|^{2} \leq \left\| \left({}^{\mathbf{0}}\boldsymbol{P}^{-1} \right)^{T} \boldsymbol{N}_{3} \right\|^{2} \| \Delta \boldsymbol{X} \boldsymbol{Y} \|^{2}$$

可以最小化该误差的上界,即考虑

$$\min_{\boldsymbol{P},\boldsymbol{N}_3} \left\| \left({}^{\boldsymbol{0}}\boldsymbol{P}^{-1} \right)^T \boldsymbol{N}_3 \right\|^2$$

对于有限的点集,只需要遍历该数据集即可得到最小‖(⁰P⁻¹)^TN₃‖²的组合,该组合并不一定 是最优的,但是其误差是一定可控的。

3.3.2 恒星选择个数的讨论

当视场内恒星的数量*n* > 3时,可以使用 OLS 等方法,利用多个恒星的信息估计*D*点在天球坐 标系中的位置信息。

即考虑

$$R^{0}P' = c'$$
$$^{0}w = R^{T}e_{3}$$

其中

$${}^{0}P' = \begin{pmatrix} {}^{0}p_{1}^{T} \\ \cdots \\ {}^{0}p_{i}^{T} \\ \cdots \\ {}^{0}p_{n}^{T} \end{pmatrix}, c' = \begin{pmatrix} c_{1} \\ \cdots \\ c_{i} \\ \cdots \\ c_{n} \end{pmatrix}$$

且⁰P′是列满秩的。

类似的,引入如下两种处理方法:

(一)无约束拟合,对拟合结果归一化处理

该方法在拟合参数时,不限制 $\|\mathbf{R}\mathbf{R}^T - \mathbf{I}\|^2 = 0$ 。

$$L_1 = \left\| \boldsymbol{R}^{\boldsymbol{0}} \boldsymbol{P}' - \boldsymbol{c}' \right\|^2$$

得到估计的**Â**,对其进行 SVD 分解,即

$$U'\Sigma {V'}^T = \widehat{R}$$

那么

$$R = U'V'^T$$

使用归一化处理的方法得到

$${}^{0}w = \frac{U'^{T}V'e_{3}}{\|U'^{T}V'e_{3}\|}$$

(二)带约束拟合,使用拉格朗日方法求解

该方法在拟合参数时,限制 $\|\mathbf{R}\mathbf{R}^T - \mathbf{I}\|^2 = 0$,该损失函数为

$$L_{2} = \left\|\boldsymbol{R}^{\boldsymbol{0}}\boldsymbol{P}' - \boldsymbol{c}'\right\|^{2} - \lambda \left(\left\|\boldsymbol{R}\boldsymbol{R}^{T} - \boldsymbol{I}\right\|^{2}\right)$$

同样的,考虑一阶偏导数

$$\frac{\partial L_2}{\partial \boldsymbol{R}} = \boldsymbol{0}, \frac{\partial L_2}{\partial \lambda} = \boldsymbol{0}$$

使用带约束的优化求解器求解此问题的数值解。

3.3.3 仿真分析

(一) OLS 方法比较

仿真生成旋转矩阵**R**,使用对星表中所有恒星进行投影和加正态分布噪声的方式,评估 OLS 不同估计方法解算D结果的优劣,有如下仿真结果。可以发现对于矢量**a**的输入,不同估计方法得到的误差结果基本一致,均值在1″,而带约束的 OLS 估计解算要耗时更多。

图 3.4 有噪声-矢量 a-OLS 估计的误差分布

(二)算法评估与比较

使用如下方法仿真题目中描述的星敏感器视场,并分别评估和比较 OLS 和算法选取三颗星的 优劣:

- (1) 生成一个合理的旋转矩阵R;
- (2) 在附件给出的星表中随机选择一个点;
- (3) 根据附件的参数选取该点的视场范围内的星,生成理论的星图;
- (4) 对理论星图添加正态分布的随机噪声;
- (5) 计算使用星图中所有三颗星组合来解算D的误差;
- (6) 计算使用算法挑选最优的三颗星解算D的误差,并获取该误差在总误差中的排名;
- (7) 计算使用 OLS 估计得到的D的误差,并获取该误差在总误差中的排名;
- (8) 重复(4)-(7)共1000次,得到统计结果。

可以发现 OLS 显著好于算法选点的结果,能够稳定战胜 90%左右的使用三颗星的解算结果, 而算法选点的精度也能稳定战胜 81%左右的三颗星的结果,这说明该算法选点方法是相对可靠的, 但是 OLS 估计的方法精度更高,同样也更加耗时。

图 3.5 有噪声-矢量 a-不同处理方法的误差排名

根据下图所示结果,使用同样的计算方法以及误差分布,矢量**a**由于有了更多的信息,相对标量**a**有更精确的求解结果。

图 3.6 有噪声-不同数据输入-归一化处理的误差分布

图 3.7 有噪声-不同数据输入-引入误差项-线性假设的误差分布

图 3.8 有噪声-不同数据输入-归一化处理-无f的误差分布

读取附件2给出的简易星表,得到如下所示分布,其中颜色值代表了星等。

第4章 问题 2-星图识别算法

图 4.1 恒星在天球坐标系中的分布

4.1 算法概述

本文提出一种星图识别算法,其逻辑如下图所示,其中灰色部分表示离线完成并存储到本地的 过程。下文将详细解释该算法。

图 4.2 算法逻辑图

4.2 预处理

预处理包括划分星表块和计算角距两部分。

4.2.1 划分星表块

对星表进行划块处理是常用的加速匹配手段,使用如下所示的星表块冗余划分方式。考虑一个圆锥形张角光束成像在星敏感器的投影面上,得到一个半径为R像素的圆形视场,将该视野沿垂直的方向平移δ单位,得到如下图所示结果,其中4个圆形视场相交的位置的内切圆(图 4.3 中红色圆形)的半径**r**满足

$$r = R - \frac{\sqrt{2}}{2}\delta$$

期望星敏感器的投影面上任意一个*d*×*d*(*d* = 12°,20°)大小的像素块(图 4.3 中红色方形),都存在至少1个,最多3个这样的圆形视场完全包含该像素块,那么应满足

$$r \ge \frac{\sqrt{2}}{2}d$$

因此临界条件有

$$\frac{\sqrt{2}}{2}d = R - \frac{\sqrt{2}}{2}\delta$$

计算中, $取\delta = R/2$, 可得

$$R = \frac{\frac{\sqrt{2}}{2}d}{1 - \frac{\sqrt{2}}{4}}$$

对于视场*d* = 12°,20°,得到的*R* = 11.8139°,21.8767°,计算得到分别划分了 1830 和 528 个星 表块。

得到如下的星表块每块包含的恒星数量的统计结果,视场为12°时,每个星表块平均包含 53 个 恒星;视场为20°时,每个星表块平均包含 180 个恒星。

图 4.4 星表块大小的分布

4.2.2 计算星表块内所有角距并排序

在每个星表块内,考虑整个星表中与其圆形视场中心的光轴的夹角小于R(投影落在圆形视场内)的所有的点,计算这些恒星两两之间的角距,并存储成该星表块的离线角距表,其中角距的定义如图 3.2 所示。

$$\cos\beta_{ij} = \boldsymbol{v}_i^T \boldsymbol{v}_j$$

其中v_i表示在星敏感器坐标下OQ的法向量,有

$$\boldsymbol{\nu}_{i} = \frac{1}{\|(X_{i} \quad Y_{i} \quad f)\|} \begin{pmatrix} X_{i} \\ Y_{i} \\ f \end{pmatrix}$$

对于大小为n的星表块,共有C_n个角距需要计算。

4.3 特征提取

4.3.1 角距误差上限的估计

类似前文的讨论,估计角距误差的上界。

$$\frac{\Delta\cos\beta_{ij}}{\Delta\beta_{ij}} = -\sin\beta_{ij}\,\Delta\beta_{ij} = \boldsymbol{v}_i^T\Delta\boldsymbol{v}_j + \boldsymbol{v}_j^T\Delta\boldsymbol{v}_i$$

有

$$\Delta\beta_{ij} = -\frac{\boldsymbol{v}_i^T \Delta \boldsymbol{v}_j + \boldsymbol{v}_j^T \Delta \boldsymbol{v}_i}{\sin\beta_{ij}}$$

其中

$$\boldsymbol{\Delta v}_{i} = \begin{pmatrix} \frac{\partial v_{i1}}{\partial X_{i}} & \frac{\partial v_{i1}}{\partial Y_{i}} \\ \frac{\partial v_{i2}}{\partial X_{i}} & \frac{\partial v_{i2}}{\partial Y_{i}} \\ \frac{\partial v_{i3}}{\partial X_{i}} & \frac{\partial v_{i3}}{\partial Y_{i}} \end{pmatrix} \begin{pmatrix} \Delta X_{i} \\ \Delta Y_{i} \end{pmatrix} \coloneqq \boldsymbol{dv}_{i} \begin{pmatrix} \Delta X_{i} \\ \Delta Y_{i} \end{pmatrix}$$

那么

$$\left|\Delta\beta_{ij}\right| = \frac{v_i^T \Delta v_j + v_j^T \Delta v_i}{\left|\sin\beta_{ij}\right|} \le \frac{\sum_{n=1}^2 \sum_{m=1}^3 \left|dv_{i_{mn}}\right| + \sum_{n=1}^2 \sum_{m=1}^3 \left|dv_{j_{mn}}\right|}{\left|\sin\beta_{ij}\right|} \delta \coloneqq e$$

其中δ为星敏感器采集质心时在*X*和*Y*方向的误差,根据文献最大可以取到 0.05 像素。由此得到 了角距误差上界的估计*e*,下文也将其称为门限。

4.3.2 计算三角距特征并根据门限排序

计算待匹配星图内所有的三个恒星组合构成的三角的三个角距特征,估计这三个角距特征的误差上限,根据门限e对这些三星组合从小到大进行排序。

对于大小为m的星图,共有C_m个三星组合。

4.4 匹配

4.4.1 匹配流程细节

匹配流程细节如下所示。对于排在前面的三星组合,组合内的角距特征误差上限(门限e)较小,因此能够优先筛选掉很多无法匹配的星表块,从而加速匹配过程。

图 4.5 匹配流程细节

4.4.2 使用门限匹配星图三角特征与星表块

对于某一个三星组合的三个角距中的每个角距β_{ii},若该星表块的角距表中均存在

$$\gamma_{ij} \in \left[\beta_{ij} - e, \beta_{ij} + e\right]$$

那么认为该三星组合与该星表块可能存在匹配关系。当存在某一组γ_{ij},γ_{jk},γ_{ki}能够构成三角形 时,可以认为该三星组合与该星表块建立了匹配关系。

4.4.3 处理假星的算法改进

缺失星对该匹配算法没有影响,然而假星会对让该算法判断无法匹配,提出下列方法对原始算 法进行改进。

图 4.6 匹配流程细节(改进)

注意: 高阶星组的定义为在星表块中识别出的多个相邻三角形,比如四个三角形 123、234、134、124 就形成 1234 的高阶星组,而不在该高阶星组里的星将被认为是假星被去除。

第5章 问题 2-星图识别算法的求解结果与性能评估

5.1 星图求解结果

星图求解的具体结果见附 录: 附件 3 星图中星象点对应恒星编号, 其中星图 3 和星图 6 都被 识别出 3 个干扰星, 标注为 NA, 星图 7 和星图 8 分两列显示。

5.2 输入星图与解算星图

下图是输入星图与解算星图之间的关系,可以看到原输入与解算的结果之间足够接近,误差的 二范数不到 0.1 像素。同时星图 3 和星图 6 都能看到未匹配的噪声或者假星。

图 5.1 输入星图与解算星图

图 5.3 数据集在天球坐标系中的分布

5.3 算法的性能评估

分别从识别时间、存储容量和鲁棒性三个角度评估该算法。

5.3.1 识别时间

本算法首先需要本地预处理计算,这一步虽然耗费一定的时间,但是对后面的在线匹配起到了 一定的加速作用。对于小规模的问题,比如星图 1-6,数据的读取、星图识别时间大概在 s 级,当 处理大规模的问题,比如星图 7-8,该算法整体耗费的时间在分钟级别。

这里使用的实验环境为cpu i5 – 4210u matlabR2015b。

5.3.2 存储容量

整体本地存储的文件在 100M 以内,视场大小为20°的离线文件大小为 92.6M,视场大小为12° 的离线文件大小为 31M。

5.3.3 鲁棒性

(一) 噪声

该算法由于使用了误差上界的估计方法,因此对噪声较为敏感,需要给定合理的噪声估计的参数δ,从而得到适合的门限值*e*。

(二)干扰星

(I) 假星

考虑 4.4.3 中对处理噪声与假星的算法改进,可以一定程度上提升鲁棒性,从而有效降低假星的干扰。

(II) 缺失星

由于采用的是三点匹配的方法,该算法能有效规避缺失星的问题。

5.4 仿真分析

使用前文用来分析问题 1 (3) 的逻辑,生成带有噪声的星图,然后验证识别这些星图的准确 率。这里门限e的参数δ设置为0.05,跟前文保持一致。

随机生成 1000 组不同的星图用来匹配,最终得到的匹配准确率为 100%,选取其中的 9 个星图 作图如下所示。

图 5.4 输入星图与解算仿真星图

图 5.5 输入星图与解算仿真星图误差分布

图 5.6 仿真数据集在天球坐标系中的分布

	星图1	星图 2	星图 3	星图 4	星图 5	星图 6	
1	1670	518	1864	3249	1230	1670	
2	1477	472	NA	3346	1150	NA	
3	1502	537	1825	3364	1017	1502	
4	1631	428	NA	3275	1033	1631	
5	1603	491	1943	3421	1014	NA	
6	1453	469	NA	3319	1223	1692	
7	1432	482	1722	3283	1008	1492	
8	1492	503		3370	1208	NA	
9	1488	478		3265	1201	1646	
10	1648	499		3261		1566	
11	1646	547		3321		1655	
12	1566	460		3309		1505	
13	1688	507					
14	1655	556					
15	1505	447					
16		479					
序号	星图7	序号	星图7	序号	星图 8	序号	星图 8
1	1525	22	1603	1	1572	22	1359
2	1572	23	1415	2	1387	23	1505
3	1443	24	1692	3	1675	24	1373
4	1748	25	1453	4	1634	25	1576
5	1780	26	1432	5	1586	26	1424
6	1675	27	1492	6	1610	27	1375
7	1720	28	1488	7	1354	28	1401
8	1503	29	1648	8	1681	29	1385
9	1634	30	1646	9	1606	30	
10	1577	31	1566	10	1670	31	
11	1757	32	1688	11	1390	32	
12	1586	33	1655	12	1502	33	
13	1536	34	1505	13	1631	34	
14	1610	35	1373	14	1603	35	
15	1681	36	1576	15	1692	36	
16	1606	37	1545	16	1432	37	
17	1670	38	1424	17	1488	38	
18	1477	39	1375	18	1648	39	
19	1790	40	1825	19	1646	40	
20	1502	41	1401	20	1566	41	
21	1631	42		21	1688	42	

附 录: 附件3星图中星象点对应恒星编号

参考文献

[1] 贾辉. 高精度星敏感器星点提取与星图识别研究[D]. 国防科学技术大学, 2010.

[2] 欧阳桦. 基于 CCD 星敏感器的星图模拟和导航星提取的方法研究[D]. 华中科技大学, 2005.

[3] 聂侥. 基于 CCD 星敏感器的星图识别[D]. 国防科学技术大学, 2012.

[4] 李江操. 基于星敏感器的星图识别算法的研究[D]. 中国科学院大学(中国科学院光电技术研究所), 2018.

[5] 范经伟. 快速星图识别算法设计与实现[D]. 南京理工大学, 2017.

[6] 许威. 星点快速提取与高精度定位技术研究[D]. 浙江大学, 2013.

[7] 聂侥. 基于 CCD 星敏感器的星图识别[D]. 国防科学技术大学, 2012.

[8] 王昊京. 三视场恒星识别天文导航方法研究[D].中国科学院研究生院(长春光学精密机械与物理研究所),2012.

[9] 孙高飞,张国玉,郑茹,杨孟飞,郝云彩.星敏感器标定方法的研究现状与发展趋势[J].长春理工 大学学报(自然科学版),2010,33(04):8-14.

[10] 陈赜. 星图快速识别与定位技术研究[D]. 电子科技大学, 2010.

[11] 王鹏. 基于星载敏感器的卫星自主导航及姿态确定方法研究[D]. 哈尔滨工业大学, 2008.

[12] 张锐. 基于 CCD 星敏感器的星图识别算法的设计与实现[D]. 解放军信息工程大学, 2007.